Clarksville, TN Online: News, Opinion, Arts & Entertainment.


Topic: NASA’s Mars Reconnaissance Orbiter

NASA continues to explore our Solar System

 

Written by Felicia Chou
NASA Headquarters

NASA - National Aeronautics and Space AdministrationWashington, D.C. – NASA’s Juno is now poised to shine a spotlight on the origins and interior structure of the largest planet in our solar system.

As we wait for Juno’s first close-up images of Jupiter (to be taken August 27th during the spacecraft’s next pass by the planet), NASA continues to explore our solar system to help answer fundamental questions about how we came to be, where we are going and whether we are alone in the universe.

Montage of planets. (NASA/JPL)

Montage of planets. (NASA/JPL)

«Read the rest of this article»

Sections: Technology | No Comments
 

NASA’s Mars Reconnaissance Orbiter observes Carbon Dioxide Frost Agitate the Soil on Mars

 

Written by Guy Webster
NASA’s Jet Propulsion Laboratory

NASA - National Aeronautics and Space AdministrationPasadena, CA – Some dusty parts of Mars get as cold at night year-round as the planet’s poles do in winter, even regions near the equator in summer, according to new NASA findings based on Mars Reconnaissance Orbiter observations.

The surface in these regions becomes so frigid overnight that an extremely thin layer of carbon dioxide frost appears to form. The frost then vaporizes in the morning. Enough dust covers these regions that their heat-holding capacity is low and so the daily temperature swing is large. Daily volatilization of frost crystals that form among the dust grains may help keep the dust fluffy and so sustain this deep overnight chill.

This map shows the frequency of carbon dioxide frost's presence at sunrise on Mars, as a percentage of days year-round. Carbon dioxide ice more often covers the ground at night in some mid-latitude regions than in polar regions, where it is generally absent for much of summer and fall. (NASA/JPL-Caltech)

This map shows the frequency of carbon dioxide frost’s presence at sunrise on Mars, as a percentage of days year-round. Carbon dioxide ice more often covers the ground at night in some mid-latitude regions than in polar regions, where it is generally absent for much of summer and fall. (NASA/JPL-Caltech)

«Read the rest of this article»

Sections: Technology | No Comments
 

NASA studies Mars Canyons for signs of liquid water

 

Written by Guy Webster
NASA’s Jet Propulsion Laboratory

NASA - National Aeronautics and Space AdministrationPasadena, CA – Puzzles persist about possible water at seasonally dark streaks on Martian slopes, according to a new study of thousands of such features in the Red Planet’s largest canyon system.

The study published today investigated thousands of these warm-season features in the Valles Marineris region near Mars’ equator. Some of the sites displaying the seasonal flows are canyon ridges and isolated peaks, ground shapes that make it hard to explain the streaks as resulting from underground water directly reaching the surface.

Blue dots on this map indicate sites of recurring slope lineae (RSL) in part of the Valles Marineris canyon network on Mars. RSL are seasonal dark streaks that may be indicators of liquid water. The area mapped here has the highest density of known RSL on Mars. (NASA/JPL-Caltech/Univ. of Arizona)

Blue dots on this map indicate sites of recurring slope lineae (RSL) in part of the Valles Marineris canyon network on Mars. RSL are seasonal dark streaks that may be indicators of liquid water. The area mapped here has the highest density of known RSL on Mars. (NASA/JPL-Caltech/Univ. of Arizona)

«Read the rest of this article»

Sections: Technology | No Comments
 


NASA’s Curiosity Mars Rover may be used to search for Water on Mars

 

Written by Guy Webster
NASA’s Jet Propulsion Laboratory

NASA - National Aeronautics and Space AdministrationPasadena, CA – Ever since it was announced that there may be evidence of liquid water on present-day Mars, NASA scientists have wondered how best to further investigate these long, seasonally changing dark streaks in the hope of finding evidence of life — past or present — on the Red Planet.

“It’s not as simple as driving a rover to a potential site and taking a scoop of soil,” said Jim Green, NASA’s director of planetary science. “Not only are these on steep slopes, we need to ensure that planetary protection concerns are met. In other words, how can we search for evidence of life without contaminating the sites with bugs from Earth?”

This May 11, 2016, self-portrait of NASA's Curiosity Mars rover shows the vehicle at the "Okoruso" drilling site on lower Mount Sharp's "Naukluft Plateau." The scene is a mosaic of multiple images taken with the arm-mounted Mars Hands Lens Imager (MAHLI). (NASA/JPL-Caltech/MSSS)

This May 11, 2016, self-portrait of NASA’s Curiosity Mars rover shows the vehicle at the “Okoruso” drilling site on lower Mount Sharp’s “Naukluft Plateau.” The scene is a mosaic of multiple images taken with the arm-mounted Mars Hands Lens Imager (MAHLI). (NASA/JPL-Caltech/MSSS)

«Read the rest of this article»

Sections: Technology | No Comments
 

NASA’s Mars Rover Opportunity finishes work at Marathon Valley on Mars

 

Written by Guy Webster
NASA’s Jet Propulsion Laboratory

NASA - National Aeronautics and Space AdministrationPasadena, CA – “Marathon Valley,” slicing through a large crater’s rim on Mars, has provided fruitful research targets for NASA’s Opportunity rover since July 2015, but the rover may soon move on.

Opportunity recently collected a sweeping panorama from near the western end of this east-west valley. The vista shows an area where the mission investigated evidence about how water altered the ancient rocks and, beyond that, the wide floor of Endeavour Crater and the crater’s eastern rim about 14 miles (22 kilometers) away.

"Marathon Valley" on Mars opens to a view across Endeavour Crater in this scene from the Pancam of NASA's Mars rover Opportunity. The scene merges many exposures taken during April and May 2016. The view spans from north (left) to west-southwest. Its foreground shows the valley's fractured texture. (NASA/JPL-Caltech/Cornell Univ./Arizona State Univ.)

“Marathon Valley” on Mars opens to a view across Endeavour Crater in this scene from the Pancam of NASA’s Mars rover Opportunity. The scene merges many exposures taken during April and May 2016. The view spans from north (left) to west-southwest. Its foreground shows the valley’s fractured texture. (NASA/JPL-Caltech/Cornell Univ./Arizona State Univ.)

«Read the rest of this article»

Sections: Technology | No Comments
 

NASA’s Mars Reconnaissance Orbiter data shows Dust Storm Pattern on Mars

 

Written by Guy Webster
NASA’s Jet Propulsion Laboratory

NASA - National Aeronautics and Space AdministrationPasadena, CA – After decades of research to discern seasonal patterns in Martian dust storms from images showing the dust, but the clearest pattern appears to be captured by measuring the temperature of the Red Planet’s atmosphere.

For six recent Martian years, temperature records from NASA Mars orbiters reveal a pattern of three types of large regional dust storms occurring in sequence at about the same times each year during the southern hemisphere spring and summer. Each Martian year lasts about two Earth years.

“When we look at the temperature structure instead of the visible dust, we finally see some regularity in the large dust storms,” said David Kass of NASA’s Jet Propulsion Laboratory, Pasadena, California.

This graphic presents Martian atmospheric temperature data as curtains over an image of Mars taken during a regional dust storm. The temperature profiles extend from the surface to about 50 miles up. Temperatures are color coded, from minus 243 degrees Fahrenheit (purple) to minus 9 F (red).

This graphic presents Martian atmospheric temperature data as curtains over an image of Mars taken during a regional dust storm. The temperature profiles extend from the surface to about 50 miles up. Temperatures are color coded, from minus 243 degrees Fahrenheit (purple) to minus 9 F (red).

«Read the rest of this article»

Sections: Technology | No Comments
 

NASA Spacecraft images indicate Tsunamis on Mars shaped it’s Coastal areas

 

NASA’s Ames Research Center

NASA - National Aeronautics and Space AdministrationMoffett Field, CA – New NASA-funded research indicates that giant tsunamis played a fundamental role in forming Martian coastal terrain, removing much of the controversy that for decades shrouded the hypothesis that oceans existed early in Mars’ history.

“Imagine a huge wall of red water the size of a high-rise building moving towards you at the speed of a jetliner,” said J. Alexis P. Rodriguez, former NASA Postdoctoral Program fellow at NASA’s Ames Research Center in California’s Silicon Valley, and senior research scientist at the Planetary Science Institute in Tucson, Arizona. “That could be a fair way to picture it in your mind.”

Left: Color-coded digital elevation model of the study area showing the two proposed shoreline levels of an early Mars ocean that existed approximately 3.4 billion years ago. Right: Areas covered by the documented tsunami events extending from these shorelines. (Alexis Rodriguez)

Left: Color-coded digital elevation model of the study area showing the two proposed shoreline levels of an early Mars ocean that existed approximately 3.4 billion years ago. Right: Areas covered by the documented tsunami events extending from these shorelines. (Alexis Rodriguez)

«Read the rest of this article»

Sections: Technology | No Comments
 


NASA’s Mars Reconnaissance Orbiter data reveals most recent Ice Age on Mars

 

Written by Guy Webster
NASA’s Jet Propulsion Laboratory

NASA - National Aeronautics and Space AdministrationPasadena, CA – Scientists using radar data from NASA’s Mars Reconnaissance Orbiter (MRO) have found a record of the most recent Martian ice age recorded in the planet’s north polar ice cap.

The new results agree with previous models that indicate a glacial period ended about 400,000 years ago, as well as predictions about how much ice would have been accumulated at the poles since then.

The results, published in the May 27th issue of the journal Science, help refine models of the Red Planet’s past and future climate by allowing scientists to determine how ice moves between the poles and mid-latitudes, and in what volumes.

Climatic cycles of ice and dust build the Martian polar caps, season by season, year by year, and periodically whittle down their size when the climate changes. This image is a simulated 3-D perspective view, created from image data taken by the THEMIS instrument on NASA's Mars Odyssey spacecraft. (NASA/JPL/Arizona State University, R. Luk)

Climatic cycles of ice and dust build the Martian polar caps, season by season, year by year, and periodically whittle down their size when the climate changes. This image is a simulated 3-D perspective view, created from image data taken by the THEMIS instrument on NASA’s Mars Odyssey spacecraft. (NASA/JPL/Arizona State University, R. Luk)

«Read the rest of this article»

Sections: Technology | No Comments
 

NASA’s Mars Reconnaissance Orbiter discovers evidence of Ancient Volcanoes on Mars

 

Written by Guy Webster
NASA’s Jet Propulsion Laboratory

NASA - National Aeronautics and Space AdministrationPasadena, CA – Volcanoes erupted beneath an ice sheet on Mars billions of years ago, far from any ice sheet on the Red Planet today, new evidence from NASA’s Mars Reconnaissance Orbiter suggests.

The research about these volcanoes helps show there was extensive ice on ancient Mars. It also adds information about an environment combining heat and moisture, which could have provided favorable conditions for microbial life.

Sheridan Ackiss of Purdue University, West Lafayette, Indiana, and collaborators used the orbiter’s mineral-mapping spectrometer to investigate surface composition in an oddly textured region of southern Mars called “Sisyphi Montes.”

This graphic illustrates where Mars mineral-mapping from orbit has detected minerals that can indicate where a volcano erupted beneath an ice sheet. The site is far from any ice sheet on modern Mars, in an area where unusual shapes have been interpreted as a possible result of volcanism under ice. (NASA/JPL-Caltech/JHUAPL/ASU)

This graphic illustrates where Mars mineral-mapping from orbit has detected minerals that can indicate where a volcano erupted beneath an ice sheet. The site is far from any ice sheet on modern Mars, in an area where unusual shapes have been interpreted as a possible result of volcanism under ice. (NASA/JPL-Caltech/JHUAPL/ASU)

«Read the rest of this article»

Sections: Technology | No Comments
 

NASA begins planning new Mars Orbiter with advanced communications and imaging technology

 

Written by Dwayne Brown / Laurie Cantillo
NASA Headquarters

NASA - National Aeronautics and Space AdministrationWashington, D.C. – NASA is soliciting ideas from U.S. industry for designs of a Mars orbiter for potential launch in the 2020s. The satellite would provide advanced communications and imaging, as well as robotic science exploration, in support of NASA’s Journey to Mars.

The orbiter would substantially increase bandwidth communications and maintain high-resolution imaging capability. It also may use experimental cutting-edge technologies, such as high-power solar electric propulsion or an optical communications package, which could greatly improve transmission speed and capacity over radio frequency systems.

About 1000 Viking Orbiter red- and violet-filter images have been processed to provide global color coverage of Mars at a scale of 1 km/pixel. (NASA/JPL/USGS)

About 1000 Viking Orbiter red- and violet-filter images have been processed to provide global color coverage of Mars at a scale of 1 km/pixel. (NASA/JPL/USGS)

«Read the rest of this article»

Sections: Technology | No Comments
 


Page 1 of 1012345...»

Personal Controls

Archives