Clarksville, TN Online: News, Opinion, Arts & Entertainment.


Topic: Neutron Star

NASA’s discovers bright Neutron Star among two Supermassive Black Holes

 

NASA Jet Propulsion Laboratory

NASA - National Aeronautics and Space AdministrationPasadena, CA – In the nearby Whirlpool galaxy and its companion galaxy, M51b, two supermassive black holes heat up and devour surrounding material. These two monsters should be the most luminous X-ray sources in sight, but a new study using observations from NASA’s NuSTAR (Nuclear Spectroscopic Telescope Array) mission shows that a much smaller object is competing with the two behemoths.

The most stunning features of the Whirlpool galaxy – officially known as M51a – are the two long, star-filled “arms” curling around the galactic center like ribbons. The much smaller M51b clings like a barnacle to the edge of the Whirlpool. Collectively known as M51, the two galaxies are merging.

Bright green sources of high-energy X-ray light captured by NASA's NuSTAR mission are overlaid on an optical-light image of the Whirlpool galaxy (in the center of the image) and its companion galaxy, M51b (the bright greenish-white spot above the Whirlpool), taken by the Sloan Digital Sky Survey. (NASA/JPL-Caltech, IPAC)

Bright green sources of high-energy X-ray light captured by NASA’s NuSTAR mission are overlaid on an optical-light image of the Whirlpool galaxy (in the center of the image) and its companion galaxy, M51b (the bright greenish-white spot above the Whirlpool), taken by the Sloan Digital Sky Survey. (NASA/JPL-Caltech, IPAC)

«Read the rest of this article»

Sections: Technology | No Comments
 

NASA Telescopes used to study unusual Flash of Light nicknamed “The Cow”

 

Written by Jeanette Kazmierczak
NASA Goddard Space Flight Center

NASA - National Aeronautics and Space AdministrationGreenbelt, MD – A brief and unusual flash spotted in the night sky on June 16th, 2018, puzzled astronomers and astrophysicists across the globe. The event – called AT2018cow and nicknamed “the Cow” after the coincidental final letters in its official name – is unlike any celestial outburst ever seen before, prompting multiple theories about its source.

Over three days, the Cow produced a sudden explosion of light at least 10 times brighter than a typical supernova, and then it faded over the next few months.

AT2018cow erupted in or near a galaxy known as CGCG 137-068, which is located about 200 million light-years away in the constellation Hercules. This zoomed-in image shows the location of the "Cow" in the galaxy. (Sloan Digital Sky Survey)

AT2018cow erupted in or near a galaxy known as CGCG 137-068, which is located about 200 million light-years away in the constellation Hercules. This zoomed-in image shows the location of the “Cow” in the galaxy. (Sloan Digital Sky Survey)

«Read the rest of this article»

Sections: Technology | No Comments
 


NASA Telescopes discover Electromagnetic waves from a Gravitational Wave Source

 

NASA’s Goddard Space Flight Center

NASA - National Aeronautics and Space AdministrationGreenbelt, MD – About a year ago, astronomers excitedly reported the first detection of electromagnetic waves, or light, from a gravitational wave source. Now, a year later, researchers are announcing the existence of a cosmic relative to that historic event.

The discovery was made using data from telescopes including NASA’s Chandra X-ray Observatory, Fermi Gamma-ray Space Telescope, Neil Gehrels Swift Observatory, the NASA/ESA Hubble Space Telescope, and the Discovery Channel Telescope (DCT).

A distant cosmic relative to the first source that astronomers detected in both gravitational waves and light may have been discovered. This object, called GRB150101B, was first detected by identified as a gamma ray burst (GRB) by the NASA’s Fermi satellite in January 2015. (X-ray: NASA/CXC/GSFC/UMC/E. Troja et al.; Optical and infrared: NASA/STScI)

A distant cosmic relative to the first source that astronomers detected in both gravitational waves and light may have been discovered. This object, called GRB150101B, was first detected by identified as a gamma ray burst (GRB) by the NASA’s Fermi satellite in January 2015. (X-ray: NASA/CXC/GSFC/UMC/E. Troja et al.; Optical and infrared: NASA/STScI)

«Read the rest of this article»

Sections: Technology | No Comments
 

NASA Scientists use “Pulsar in a Box” to gain better understanding of Neutron Stars

 

Written by Francis Reddy
NASA’s Goddard Space Flight Center

NASA - National Aeronautics and Space AdministrationGreenbelt, MD – An international team of scientists studying what amounts to a computer-simulated “pulsar in a box” are gaining a more detailed understanding of the complex, high-energy environment around spinning neutron stars, also called pulsars.

The model traces the paths of charged particles in magnetic and electric fields near the neutron star, revealing behaviors that may help explain how pulsars emit gamma-ray and radio pulses with ultraprecise timing.

Electrons (blue) and positrons (red) from a computer-simulated pulsar. These particles become accerlated to extreme energies in a pulsar's powerful magnetic and electric fields; lighter tracks show particles with higher energies. Each particle seen here actually represents trillions of electrons or positrons. (NASA's Goddard Space Flight Center)

Electrons (blue) and positrons (red) from a computer-simulated pulsar. These particles become accerlated to extreme energies in a pulsar’s powerful magnetic and electric fields; lighter tracks show particles with higher energies. Each particle seen here actually represents trillions of electrons or positrons. (NASA’s Goddard Space Flight Center)

«Read the rest of this article»

Sections: Technology | No Comments
 

NASA’s Hubble Space Telescope observes Neutran Star with unusual Light Emission

 

NASA Headquarters

NASA - National Aeronautics and Space AdministrationWashington, D.C. – An unusual infrared light emission from a nearby neutron star detected by NASA’s Hubble Space Telescope could indicate new features never before seen. One possibility is that there is a dusty disk surrounding the neutron star; another is that there is an energetic wind coming off the object and slamming into gas in interstellar space the neutron star is plowing through.

Although neutron stars are generally studied in radio and high-energy emissions, such as X-rays, this study demonstrates that new and interesting information about neutron stars can also be gained by studying them in infrared light, say researchers.

This is an illustration of a pulsar wind nebula produced by the interaction of the outflow particles from the neutron star with gaseous material in the interstellar medium that the neutron star is plowing through. Such an infrared-only pulsar wind nebula is unusual because it implies a rather low energy of the particles accelerated by the pulsar’s intense magnetic field. (NASA, ESA, and N. Tr’Ehnl (Pennsylvania State University))

This is an illustration of a pulsar wind nebula produced by the interaction of the outflow particles from the neutron star with gaseous material in the interstellar medium that the neutron star is plowing through. Such an infrared-only pulsar wind nebula is unusual because it implies a rather low energy of the particles accelerated by the pulsar’s intense magnetic field. (NASA, ESA, and N. Tr’Ehnl (Pennsylvania State University))

«Read the rest of this article»

Sections: Technology | No Comments
 

NASA discovers X-ray Pulsar with fastest Orbit ever recorded

 

Written by Jeanette Kazmierczak
NASA’s Goddard Space Flight Center

NASA - National Aeronautics and Space AdministrationGreenbelt, MD – Scientists analyzing the first data from the Neutron star Interior Composition Explorer (NICER) mission have found two stars that revolve around each other every 38 minutes — about the time it takes to stream a TV drama.

One of the stars in the system, called IGR J17062–6143 (J17062 for short), is a rapidly spinning, superdense star called a pulsar. The discovery bestows the stellar pair with the record for the shortest-known orbital period for a certain class of pulsar binary system.

The data from NICER also show J17062’s stars are only about 186,000 miles (300,000 kilometers) apart, less than the distance between Earth and the Moon.

The stars of IGR J17062–6143, illustrated here, circle each other every 38 minutes, the fastest-known orbit for a binary system containing an accreting millisecond X-ray pulsar. As they revolve, a superdense pulsar pulls gas from a lightweight white dwarf. The two stars are so close they would fit between Earth and the Moon. (NASA’s Goddard Space Flight Center)

The stars of IGR J17062–6143, illustrated here, circle each other every 38 minutes, the fastest-known orbit for a binary system containing an accreting millisecond X-ray pulsar. As they revolve, a superdense pulsar pulls gas from a lightweight white dwarf. The two stars are so close they would fit between Earth and the Moon. (NASA’s Goddard Space Flight Center)

«Read the rest of this article»

Sections: Technology | No Comments
 


NASA uses Pulsars to detect Gravitational Waves

 

Written by Elizabeth Landau
NASA’s Jet Propulsion Laboratory

NASA - National Aeronautics and Space AdministrationPasadena, CA – One of the most spectacular achievements in physics so far this century has been the observation of gravitational waves, ripples in space-time that result from masses accelerating in space.

So far, there have been five detections of gravitational waves, thanks to the Laser Interferometer Gravitational-Wave Observatory (LIGO) and, more recently, the European Virgo gravitational-wave detector. Using these facilities, scientists have been able to pin down the extremely subtle signals from relatively small black holes and, as of October, neutron stars.

This computer simulation shows the collision of two black holes, which produces gravitational waves. (SXS)

This computer simulation shows the collision of two black holes, which produces gravitational waves. (SXS)

«Read the rest of this article»

Sections: Technology | No Comments
 

NASA detects Gravitational Waves from Two merging Neutron Stars

 

NASA Headquarters

NASA - National Aeronautics and Space AdministrationWashington, D.C. – For the first time, NASA scientists have detected light tied to a gravitational-wave event, thanks to two merging neutron stars in the galaxy NGC 4993, located about 130 million light-years from Earth in the constellation Hydra.

Shortly after 5:41am PDT (8:41am EDT) on August 17th, 2017, NASA’s Fermi Gamma-ray Space Telescope picked up a pulse of high-energy light from a powerful explosion, which was immediately reported to astronomers around the globe as a short gamma-ray burst. The scientists at the National Science Foundation’s Laser Interferometer Gravitational-wave Observatory (LIGO) detected gravitational waves dubbed GW170817 from a pair of smashing stars tied to the gamma-ray burst, encouraging astronomers to look for the aftermath of the explosion.

An artist's impression of gravitational waves generated by binary neutron stars. (R. Hurt/Caltech-JPL)

An artist’s impression of gravitational waves generated by binary neutron stars. (R. Hurt/Caltech-JPL)

«Read the rest of this article»

Sections: Technology | No Comments
 

NASA picks Six Explorers Program proposals to study our Solar System

 

Written by Elizabeth Landau
NASA’s Jet Propulsion Laboratory

NASA - National Aeronautics and Space AdministrationPasadena, CA – NASA has selected six astrophysics Explorers Program proposals for concept studies. The proposed missions would study gamma-ray and X-ray emissions from clusters of galaxies and neutron star systems, as well as infrared emissions from galaxies in the early universe and atmospheres of exoplanets, which are planets outside of our solar system.

Three of these proposed missions, called FINESSE, SPHEREx and CASE, are managed by NASA’s Jet Propulsion Laboratory in Pasadena, California. FINESSE and CASE additionally have their principal investigator based at JPL.

NASA is exploring our solar system and beyond to understand the workings of the universe, searching for water and life among the stars. (NASA)

NASA is exploring our solar system and beyond to understand the workings of the universe, searching for water and life among the stars. (NASA)

«Read the rest of this article»

Sections: Technology | No Comments
 

NASA’s Chandra X-ray Observatory photo shows merger of Two Galaxies

 

NASA Headquarters

NASA - National Aeronautics and Space AdministrationWashington, D.C. – What would happen if you took two galaxies and mixed them together over millions of years? A new image including data from NASA’s Chandra X-ray Observatory reveals the cosmic culinary outcome.

Arp 299 is a system located about 140 million light years from Earth. It contains two galaxies that are merging, creating a partially blended mix of stars from each galaxy in the process.

However, this stellar mix is not the only ingredient. New data from Chandra reveals 25 bright X-ray sources sprinkled throughout the Arp 299 concoction.

NASA’s Chandra X-ray Observatory image reveals two galaxies that are merging. (NASA)

NASA’s Chandra X-ray Observatory image reveals two galaxies that are merging. (NASA)

«Read the rest of this article»

Sections: Technology | No Comments
 



  • Visit Us On FacebookVisit Us On TwitterVisit Us On GooglePlusVisit Us On PinterestVisit Us On YoutubeCheck Our FeedVisit Us On Instagram
  • Personal Controls

    Archives