Clarksville, TN Online: News, Opinion, Arts & Entertainment.


Topic: Southwest Research Institute

NASA’s Lunar Reconnaissance Orbiter observes Water Movement on the Moon

 

NASA Goddard Space Flight Center 

NASA - National Aeronautics and Space AdministrationGreenbelt, MD – Using an instrument aboard NASA’s Lunar Reconnaissance Orbiter (LRO), scientists have observed water molecules moving around the dayside of the Moon.

A paper published in Geophysical Research Letters describes how Lyman Alpha Mapping Project (LAMP) measurements of the sparse layer of molecules temporarily stuck to the surface helped characterize lunar hydration changes over the course of a day.

Up until the last decade or so, scientists thought the Moon was arid, with any water existing mainly as pockets of ice in permanently shaded craters near the poles.

View of the Moon. (NASA)

View of the Moon. (NASA)

«Read the rest of this article»

Sections: Technology | No Comments
 

NASA Finds Possible Second Impact Crater Under Greenland Ice

 

Written By Maria-José Viñas
NASA’s Earth Science News Team

NASA - National Aeronautics and Space AdministrationWashington, D.C. – This follows the finding, announced in November 2018, of a 19-mile-wide crater beneath Hiawatha Glacier – the first meteorite impact crater ever discovered under Earth’s ice sheets. Though the newly found impact sites in northwest Greenland are only 114 miles apart, at present they do not appear to have formed at the same time.

If the second crater, which has a width of over 22 miles, is ultimately confirmed as the result of a meteorite impact, it will be the 22nd largest impact crater found on Earth.

Just 114 miles from the newly-found Hiawatha impact crater under the ice of northwest Greenland, lies a possible second impact crater. The 22-mile wide feature would be the second crater found under an ice sheet, and if confirmed, would be the 22nd-largest crater on Earth. (NASA's Goddard Space Flight Center/ Jefferson Beck)

Just 114 miles from the newly-found Hiawatha impact crater under the ice of northwest Greenland, lies a possible second impact crater. The 22-mile wide feature would be the second crater found under an ice sheet, and if confirmed, would be the 22nd-largest crater on Earth. (NASA’s Goddard Space Flight Center/ Jefferson Beck)

«Read the rest of this article»

Sections: Technology | No Comments
 


NASA’s New Horizons spacecraft takes images of Ultima Thule as it leaves

 

NASA Headquarters

NASA - National Aeronautics and Space AdministrationWashington, D.C. – An evocative new image sequence from NASA’s New Horizons spacecraft offers a departing view of the Kuiper Belt object (KBO) nicknamed Ultima Thule – the target of its New Year’s 2019 flyby and the most distant world ever explored.

These aren’t the last Ultima Thule images New Horizons will send back to Earth – in fact, many more are to come — but they are the final views New Horizons captured of the KBO (officially named 2014 MU69) as it raced away at over 31,000 miles per hour (50,000 kilometers per hour) on January 1st. The images were taken nearly 10 minutes after New Horizons crossed its closest approach point.

New Horizons took this image of the Kuiper Belt object 2014 MU69 (nicknamed Ultima Thule) on Jan. 1, 2019, when the NASA spacecraft was 5,494 miles (8,862 kilometers) beyond it. Mission scientists have been able to process the image, removing the motion blur to produce a sharper, brighter view of Ultima Thule’s thin crescent. (NASA/Johns Hopkins Applied Physics Laboratory/Southwest Research Institute/National Optical Astronomy Observatory)

New Horizons took this image of the Kuiper Belt object 2014 MU69 (nicknamed Ultima Thule) on Jan. 1, 2019, when the NASA spacecraft was 5,494 miles (8,862 kilometers) beyond it. Mission scientists have been able to process the image, removing the motion blur to produce a sharper, brighter view of Ultima Thule’s thin crescent. (NASA/Johns Hopkins Applied Physics Laboratory/Southwest Research Institute/National Optical Astronomy Observatory)

«Read the rest of this article»

Sections: Technology | No Comments
 

NASA’s New Horizons Spacecraft takes detailed photos of Ultima Thule

 

NASA Marshall Space Flight Center

NASA - National Aeronautics and Space AdministrationHuntsville, AL – Scientists from NASA’s New Horizons mission released the first detailed images of the most distant object ever explored — the Kuiper Belt object nicknamed Ultima Thule. Its remarkable appearance, unlike anything we’ve seen before, illuminates the processes that built the planets four and a half billion years ago.

“This flyby is a historic achievement,” said New Horizons Principal Investigator Alan Stern of the Southwest Research Institute in Boulder, Colorado. “Never before has any spacecraft team tracked down such a small body at such high speed so far away in the abyss of space. New Horizons has set a new bar for state-of-the-art spacecraft navigation.”

This image taken by the Long-Range Reconnaissance Imager (LORRI) is the most detailed of Ultima Thule returned so far by the New Horizons spacecraft. It was taken at 5:01 Universal Time on January 1, 2019, just 30 minutes before closest approach from a range of 18,000 miles (28,000 kilometers), with an original scale of 459 feet (140 meters) per pixel. (NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute)

This image taken by the Long-Range Reconnaissance Imager (LORRI) is the most detailed of Ultima Thule returned so far by the New Horizons spacecraft. It was taken at 5:01 Universal Time on January 1, 2019, just 30 minutes before closest approach from a range of 18,000 miles (28,000 kilometers), with an original scale of 459 feet (140 meters) per pixel. (NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute)

«Read the rest of this article»

Sections: Technology | No Comments
 

NASA’s New Horizons Spacecraft Reaches Most Distant Target in History, Ultima Thule

 

NASA Marshall Space Flight Center 

NASA - National Aeronautics and Space AdministrationHuntsville, AL – NASA’s New Horizons spacecraft flew past Ultima Thule in the early hours of New Year’s Day, ushering in the era of exploration from the enigmatic Kuiper Belt, a region of primordial objects that holds keys to understanding the origins of the solar system.

“Congratulations to NASA’s New Horizons team, Johns Hopkins Applied Physics Laboratory and the Southwest Research Institute for making history yet again,” said NASA Administrator Jim Bridenstine.

At left is a composite of two images taken by New Horizons' high-resolution Long-Range Reconnaissance Imager (LORRI), which provides the best indication of Ultima Thule's size and shape so far. Preliminary measurements of this Kuiper Belt object suggest it is approximately 20 miles long by 10 miles wide (32 kilometers by 16 kilometers). An artist's impression at right illustrates one possible appearance of Ultima Thule, based on the actual image at left. The direction of Ultima's spin axis is indicated by the arrows. (NASA/JHUAPL/SwRI; sketch courtesy of James Tuttle Keane)

At left is a composite of two images taken by New Horizons’ high-resolution Long-Range Reconnaissance Imager (LORRI), which provides the best indication of Ultima Thule’s size and shape so far. Preliminary measurements of this Kuiper Belt object suggest it is approximately 20 miles long by 10 miles wide (32 kilometers by 16 kilometers). An artist’s impression at right illustrates one possible appearance of Ultima Thule, based on the actual image at left. The direction of Ultima’s spin axis is indicated by the arrows. (NASA/JHUAPL/SwRI; sketch courtesy of James Tuttle Keane)

«Read the rest of this article»

Sections: Technology | No Comments
 

NASA Lucy Spacecraft to navigate to Jupiter’s Trojan Asteroids

 

Written by Tamsyn Brann
NASA Goddard Space Flight Center

NASA - National Aeronautics and Space AdministrationGreenbelt, MD – In science fiction, NASA says explorers can hop in futuristic spaceships and traverse half the galaxy in the blink of a plot hole. However, this sidelines the navigational acrobatics required in order to guarantee real-life mission success.

In 2021, the feat of navigation that is the Lucy mission will launch. To steer Lucy towards its targets doesn’t simply involve programming a map into a spacecraft and giving it gas money – it will fly by six asteroid targets, each in different orbits, over the course of 12 years.

This diagram illustrates Lucy's orbital path. The spacecraft’s path (green) is shown in a frame of reference where Jupiter remains stationary, giving the trajectory its pretzel-like shape. After launch in October 2021, Lucy has two close Earth flybys before encountering its Trojan targets. In the L4 cloud Lucy will fly by (3548) Eurybates (white), (15094) Polymele (pink), (11351) Leucus (red), and (21900) Orus (red) from 2027-2028. After diving past Earth again Lucy will visit the L5 cloud and encounter the (617) Patroclus-Menoetius binary (pink) in 2033. (Southwest Research Institute)

This diagram illustrates Lucy’s orbital path. The spacecraft’s path (green) is shown in a frame of reference where Jupiter remains stationary, giving the trajectory its pretzel-like shape. After launch in October 2021, Lucy has two close Earth flybys before encountering its Trojan targets. In the L4 cloud Lucy will fly by (3548) Eurybates (white), (15094) Polymele (pink), (11351) Leucus (red), and (21900) Orus (red) from 2027-2028. After diving past Earth again Lucy will visit the L5 cloud and encounter the (617) Patroclus-Menoetius binary (pink) in 2033. (Southwest Research Institute)

«Read the rest of this article»

Sections: Technology | No Comments
 


NASA’s Juno spacecraft reaches halfway point in Jupiter mission

 

NASA Jet Propulsion Laboratory 

NASA - National Aeronautics and Space AdministrationPasadena, CA – On December 21st, at 8:49:48am PST (10:49:48am CST) NASA’s Juno spacecraft will be 3,140 miles (5,053 kilometers) above Jupiter’s cloud tops and hurtling by at a healthy clip of 128,802 mph (207,287 kilometers per hour). This will be the 16th science pass of the gas giant and will mark the solar-powered spacecraft’s halfway point in data collection during its prime mission.

Juno is in a highly-elliptical 53-day orbit around Jupiter. Each orbit includes a close passage over the planet’s cloud deck, where it flies a ground track that extends from Jupiter’s north pole to its south pole.

A south tropical disturbance has just passed Jupiter's iconic Great Red Spot, and is captured stealing threads of orange haze from the Great Red Spot in this series of color-enhanced images from NASA's Juno spacecraft. (NASA/JPL-Caltech/SwRI/MSSS/Gerald Eichstadt/Sean Doran)

A south tropical disturbance has just passed Jupiter’s iconic Great Red Spot, and is captured stealing threads of orange haze from the Great Red Spot in this series of color-enhanced images from NASA’s Juno spacecraft. (NASA/JPL-Caltech/SwRI/MSSS/Gerald Eichstadt/Sean Doran)

«Read the rest of this article»

Sections: Technology | No Comments
 

NASA’s Lucy Spacecraft to explore Jupiter Trojan Asteroids

 

NASA’s Goddard Space Flight Center

NASA - National Aeronautics and Space AdministrationGreenbelt, MD – NASA says that a little over 4 billion years ago, the planets in our solar system coexisted with vast numbers of small rocky or icy objects orbiting the Sun. These were the last remnants of the planetesimals – the primitive building blocks that formed the planets.

Most of these leftover objects were then lost, as shifts in the orbits of the giant planets scattered them to the distant outer reaches of the solar system or beyond. But some were captured in two less-distant regions, near points where the gravitational influence of Jupiter and the Sun balance, and have remained trapped there, mostly untouched, for billions of years.

Conceptual image of the NASA Lucy mission to the Jupiter Trojan asteroids. (NASA/SwRI)

Conceptual image of the NASA Lucy mission to the Jupiter Trojan asteroids. (NASA/SwRI)

«Read the rest of this article»

Sections: Technology | No Comments
 

NASA’s Juno Mission discovers Waves in Jupiter’s Atmosphere

 

NASA’s Jet Propulsion Laboratory

NASA - National Aeronautics and Space AdministrationPasadena, CA – Massive structures of moving air that appear like waves in Jupiter’s atmosphere were first detected by NASA’s Voyager missions during their flybys of the gas-giant world in 1979. The JunoCam camera aboard NASA’s Juno mission to Jupiter has also imaged the atmosphere.

JunoCam data has detected atmospheric wave trains, towering atmospheric structures that trail one after the other as they roam the planet, with most concentrated near Jupiter’s equator.

Three waves can be seen in this excerpt of a JunoCam image taken on Feb. 2, 2017, during Juno's fourth flyby of Jupiter. The region imaged in this picture is part of the visibly dark band just north of Jupiter's equator known as the North Equatorial Belt. (NASA/JPL-Caltech/SwRI/MSSS/JunoCam)

Three waves can be seen in this excerpt of a JunoCam image taken on Feb. 2, 2017, during Juno’s fourth flyby of Jupiter. The region imaged in this picture is part of the visibly dark band just north of Jupiter’s equator known as the North Equatorial Belt. (NASA/JPL-Caltech/SwRI/MSSS/JunoCam)

«Read the rest of this article»

Sections: Technology | No Comments
 

NASA’s New Horizons Spacecraft sees its next target Ultima Thule

 

NASA Headquarters

NASA - National Aeronautics and Space AdministrationWashington, D.C. – NASA’s New Horizons spacecraft has made its first detection of its next flyby target, the Kuiper Belt object nicknamed Ultima Thule, more than four months ahead of its New Year’s 2019 close encounter.

Mission team members were thrilled – if not a little surprised – that New Horizons’ telescopic Long Range Reconnaissance Imager (LORRI) was able to see the small, dim object while still more than 100 million miles away, and against a dense background of stars. Taken August 16th, 2018 and transmitted home through NASA’s Deep Space Network over the following days, the set of 48 images marked the team’s first attempt to find Ultima with the spacecraft’s own cameras. 

The figure on the left is a composite image produced by adding 48 different exposures from the News Horizons Long Range Reconnaissance Imager (LORRI), each with an exposure time of 29.967 seconds, taken on Aug. 16, 2018. The predicted position of the Kuiper Belt object nicknamed Ultima Thule is at the center of the yellow box, and is indicated by the yellow crosshairs, just above and left of a nearby star that is approximately 17 times brighter than Ultima. At right is a magnified view of the region in the yellow box. (NASA/JHUAPL/SwRI)

The figure on the left is a composite image produced by adding 48 different exposures from the News Horizons Long Range Reconnaissance Imager (LORRI), each with an exposure time of 29.967 seconds, taken on Aug. 16, 2018. The predicted position of the Kuiper Belt object nicknamed Ultima Thule is at the center of the yellow box, and is indicated by the yellow crosshairs, just above and left of a nearby star that is approximately 17 times brighter than Ultima. At right is a magnified view of the region in the yellow box. (NASA/JHUAPL/SwRI)

«Read the rest of this article»

Sections: Technology | No Comments
 



  • Visit Us On FacebookVisit Us On TwitterVisit Us On GooglePlusVisit Us On PinterestVisit Us On YoutubeCheck Our FeedVisit Us On Instagram
  • Personal Controls

    Archives