44.9 F
Clarksville
Sunday, January 29, 2023
Home These fine-grained sediments, likely deposited under water, suggest that Mars could have supported ancient microbial life. Data gathered by Curiosity indicate a habitable environment characterized by neutral pH, chemical gradients that would have created energy for microbes, and a distinctly low salinity, which would have helped metabolism if microorganisms had ever been present. (Image Credit: NASA/JPL-Caltech/Cornell/MSSS) These fine-grained sediments, likely deposited under water, suggest that Mars could have supported ancient microbial life. Data gathered by Curiosity indicate a habitable environment characterized by neutral pH, chemical gradients that would have created energy for microbes, and a distinctly low salinity, which would have helped metabolism if microorganisms had ever been present. (Image Credit: NASA/JPL-Caltech/Cornell/MSSS)

These fine-grained sediments, likely deposited under water, suggest that Mars could have supported ancient microbial life. Data gathered by Curiosity indicate a habitable environment characterized by neutral pH, chemical gradients that would have created energy for microbes, and a distinctly low salinity, which would have helped metabolism if microorganisms had ever been present. (Image Credit: NASA/JPL-Caltech/Cornell/MSSS)

These fine-grained sediments, likely deposited under water, suggest that Mars could have supported ancient microbial life. Data gathered by Curiosity indicate a habitable environment characterized by neutral pH, chemical gradients that would have created energy for microbes, and a distinctly low salinity, which would have helped metabolism if microorganisms had ever been present. (Image Credit: NASA/JPL-Caltech/Cornell/MSSS)

These fine-grained sediments, likely deposited under water, suggest that Mars could have supported ancient microbial life. Data gathered by Curiosity indicate a habitable environment characterized by neutral pH, chemical gradients that would have created energy for microbes, and a distinctly low salinity, which would have helped metabolism if microorganisms had ever been present. (Image Credit: NASA/JPL-Caltech/Cornell/MSSS)

This false-color map shows the area within Gale Crater where NASA’s Curiosity rover landed on Aug. 5th, 2012 PDT and the location where Curiosity collected its first drilled sample at the “John Klein” rock. This image was obtained by the Thermal Emission Imaging System on NASA’s Odyssey orbiter. (Image credit: NASA/JPL-Caltech/ASU)