Written by Elizabeth Landau
NASA’s Jet Propulsion Laboratory
Pasadena, CA – The Voyager 1 spacecraft has experienced three shock waves.
The most recent shock wave, first observed in February 2014, still appears to be going on.
One wave, previously reported, helped researchers determine that Voyager 1 had entered interstellar space.
The “tsunami wave” that NASA’s Voyager 1 spacecraft began experiencing earlier this year is still propagating outward, according to new results. It is the longest-lasting shock wave that researchers have seen in interstellar space.

A “tsunami wave” occurs when the sun emits a coronal mass ejection, throwing out a magnetic cloud of plasma from its surface. This generates a wave of pressure. When the wave runs into the interstellar plasma — the charged particles found in the space between the stars — a shock wave results that perturbs the plasma.
“The tsunami causes the ionized gas that is out there to resonate — “sing” or vibrate like a bell,” said Ed Stone, project scientist for the Voyager mission based at California Institute of Technology in Pasadena.
This is the third shock wave that Voyager 1 has experienced. The first event was in October to November of 2012, and the second wave in April to May of 2013 revealed an even higher plasma density. Voyager 1 detected the most recent event in February, and it is still going on as of November data. The spacecraft has moved outward 250 million miles (400 million kilometers) during the third event.
“This remarkable event raises questions that will stimulate new studies of the nature of shocks in the interstellar medium,” said Leonard Burlaga, astrophysicist emeritus at NASA Goddard Spaceflight Center in Greenbelt, Maryland, who analyzed the magnetic field data that were key to these results.
It is unclear to researchers what the unusual longevity of this particular wave may mean. They are also uncertain as to how fast the wave is moving or how broad a region it covers.
“The density of the plasma is higher the farther Voyager goes,” Stone said. “Is that because the interstellar medium is denser as Voyager moves away from the heliosphere, or is it from the shock wave itself? We don’t know yet.”
Gurnett, principal investigator of the plasma wave instrument on Voyager, expects that such shock waves propagate far out into space, perhaps even to twice the distance between the sun and where the spacecraft is right now.
Voyager 1 and its twin, Voyager 2, were launched 16 days apart in 1977. Both spacecraft flew by Jupiter and Saturn. Voyager 2 also flew by Uranus and Neptune. Voyager 2, launched before Voyager 1, is the longest continuously operated spacecraft and is expected to enter interstellar space in a few years.
JPL, a division of Caltech, built the twin Voyager spacecraft and operates them for the Heliophysics Division within NASA’s Science Mission Directorate in Washington.
For more information on the Voyager mission, visit: http://voyager.jpl.nasa.gov