73.1 F
Clarksville
Thursday, August 11, 2022
Home NASA’s Curiosity rover used an instrument called SAM (Sample Analysis at Mars) to detect seasonal changes in atmospheric methane in Gale Crater. The methane signal has been observed for nearly three Martian years (nearly six Earth years), peaking each summer. (NASA/JPL-Caltech) NASA's Curiosity rover used an instrument called SAM (Sample Analysis at Mars) to detect seasonal changes in atmospheric methane in Gale Crater. The methane signal has been observed for nearly three Martian years (nearly six Earth years), peaking each summer. (NASA/JPL-Caltech)

NASA’s Curiosity rover used an instrument called SAM (Sample Analysis at Mars) to detect seasonal changes in atmospheric methane in Gale Crater. The methane signal has been observed for nearly three Martian years (nearly six Earth years), peaking each summer. (NASA/JPL-Caltech)

NASA's Curiosity rover used an instrument called SAM (Sample Analysis at Mars) to detect seasonal changes in atmospheric methane in Gale Crater. The methane signal has been observed for nearly three Martian years (nearly six Earth years), peaking each summer. (NASA/JPL-Caltech)

NASA’s Curiosity rover used an instrument called SAM (Sample Analysis at Mars) to detect seasonal changes in atmospheric methane in Gale Crater. The methane signal has been observed for nearly three Martian years (nearly six Earth years), peaking each summer. (NASA/JPL-Caltech)

NASA’s Curiosity rover has discovered ancient organic molecules on Mars, embedded within sedimentary rocks that are billions of years old. (NASA/GSFC)