73 F
Clarksville
Wednesday, August 10, 2022
Home A diagram showing the components of the TDE observed in Arp299B. (Not to scale). The supermassive black hole at the center of the galaxy is surrounded by a highly dense medium, and embedded in a dusty torus. Most of the optical and X-ray emissions produced by the event were absorbed, and re-emitted at infrared (IR) wavelengths due to the existence of polar dust. (Seppo Mattila, Miguel Pérez-Torres et al. 2018 (Science)) A diagram showing the components of the TDE observed in Arp299B. (Not to scale). The supermassive black hole at the center of the galaxy is surrounded by a highly dense medium, and embedded in a dusty torus. Most of the optical and X-ray emissions produced by the event were absorbed, and re-emitted at infrared (IR) wavelengths due to the existence of polar dust. (Seppo Mattila, Miguel Pérez-Torres et al. 2018 (Science))

A diagram showing the components of the TDE observed in Arp299B. (Not to scale). The supermassive black hole at the center of the galaxy is surrounded by a highly dense medium, and embedded in a dusty torus. Most of the optical and X-ray emissions produced by the event were absorbed, and re-emitted at infrared (IR) wavelengths due to the existence of polar dust. (Seppo Mattila, Miguel Pérez-Torres et al. 2018 (Science))

A diagram showing the components of the TDE observed in Arp299B. (Not to scale). The supermassive black hole at the center of the galaxy is surrounded by a highly dense medium, and embedded in a dusty torus. Most of the optical and X-ray emissions produced by the event were absorbed, and re-emitted at infrared (IR) wavelengths due to the existence of polar dust. (Seppo Mattila, Miguel Pérez-Torres et al. 2018 (Science))

A diagram showing the components of the TDE observed in Arp299B. (Not to scale). The supermassive black hole at the center of the galaxy is surrounded by a highly dense medium, and embedded in a dusty torus. Most of the optical and X-ray emissions produced by the event were absorbed, and re-emitted at infrared (IR) wavelengths due to the existence of polar dust. (Seppo Mattila, Miguel Pérez-Torres et al. 2018 (Science))

An image of the galaxy Arp299B, which is undergoing a merging process with Arp299A (the galaxy to the left), captured by NASA’s Hubble space telescope. The inset features an artist’s illustration of a tidal disruption event (TDE), which occurs when a star passes fatally close to a supermassive black hole. A TDE was recently observed near the center of Arp299B. (Sophia Dagnello, NRAO/AUI/NSF; NASA, STScI)