70 F
Clarksville
Friday, August 12, 2022
Home In the Astrotech processing facility in Titusville, Florida, near NASA’s Kennedy Space Center, on Tuesday, June 5, 2018, technicians and engineers perform light bar testing on NASA’s Parker Solar Probe. The spacecraft will launch on a United Launch Alliance Delta IV Heavy rocket from Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida. (NASA/Glenn Benson) In the Astrotech processing facility in Titusville, Florida, near NASA's Kennedy Space Center, on Tuesday, June 5, 2018, technicians and engineers perform light bar testing on NASA's Parker Solar Probe. The spacecraft will launch on a United Launch Alliance Delta IV Heavy rocket from Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida. (NASA/Glenn Benson)

In the Astrotech processing facility in Titusville, Florida, near NASA’s Kennedy Space Center, on Tuesday, June 5, 2018, technicians and engineers perform light bar testing on NASA’s Parker Solar Probe. The spacecraft will launch on a United Launch Alliance Delta IV Heavy rocket from Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida. (NASA/Glenn Benson)

In the Astrotech processing facility in Titusville, Florida, near NASA's Kennedy Space Center, on Tuesday, June 5, 2018, technicians and engineers perform light bar testing on NASA's Parker Solar Probe. The spacecraft will launch on a United Launch Alliance Delta IV Heavy rocket from Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida. (NASA/Glenn Benson)

In the Astrotech processing facility in Titusville, Florida, near NASA’s Kennedy Space Center, on Tuesday, June 5, 2018, technicians and engineers perform light bar testing on NASA’s Parker Solar Probe. The spacecraft will launch on a United Launch Alliance Delta IV Heavy rocket from Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida. (NASA/Glenn Benson)

Parker Solar Probe’s heat shield is made of two panels of superheated carbon-carbon composite sandwiching a lightweight 4.5-inch-thick carbon foam core. To reflect as much of the Sun’s energy away from the spacecraft as possible, the Sun-facing side of the heat shield is also sprayed with a specially formulated white coating. (NASA/Johns Hopkins APL/Ed Whitman)