55.5 F
Clarksville
Friday, April 19, 2024
Home These side-by-side images of Mars, taken roughly two years apart, show very different views of the same hemisphere of Mars. Both were captured when Mars was near opposition, which occurs about every two years, when Earth’s orbit catches up to Mars’ orbit. At that time, the Sun, Earth and Mars fall in a straight line, with Mars and the Sun on “opposing” sides of Earth. The image on the left, taken on May 12, 2016, shows a clear atmosphere. The picture on the right, taken on July 18, 2018, features a global dust storm, with spring in the southern hemisphere. (NASA, ESA, and STScI) These side-by-side images of Mars, taken roughly two years apart, show very different views of the same hemisphere of Mars. Both were captured when Mars was near opposition, which occurs about every two years, when Earth’s orbit catches up to Mars’ orbit. At that time, the Sun, Earth and Mars fall in a straight line, with Mars and the Sun on “opposing” sides of Earth. The image on the left, taken on May 12, 2016, shows a clear atmosphere. The picture on the right, taken on July 18, 2018, features a global dust storm, with spring in the southern hemisphere. (NASA, ESA, and STScI)

These side-by-side images of Mars, taken roughly two years apart, show very different views of the same hemisphere of Mars. Both were captured when Mars was near opposition, which occurs about every two years, when Earth’s orbit catches up to Mars’ orbit. At that time, the Sun, Earth and Mars fall in a straight line, with Mars and the Sun on “opposing” sides of Earth. The image on the left, taken on May 12, 2016, shows a clear atmosphere. The picture on the right, taken on July 18, 2018, features a global dust storm, with spring in the southern hemisphere. (NASA, ESA, and STScI)

These side-by-side images of Mars, taken roughly two years apart, show very different views of the same hemisphere of Mars. Both were captured when Mars was near opposition, which occurs about every two years, when Earth’s orbit catches up to Mars’ orbit. At that time, the Sun, Earth and Mars fall in a straight line, with Mars and the Sun on “opposing” sides of Earth. The image on the left, taken on May 12, 2016, shows a clear atmosphere. The picture on the right, taken on July 18, 2018, features a global dust storm, with spring in the southern hemisphere. (NASA, ESA, and STScI)

These side-by-side images of Mars, taken roughly two years apart, show very different views of the same hemisphere of Mars. Both were captured when Mars was near opposition, which occurs about every two years, when Earth’s orbit catches up to Mars’ orbit. At that time, the Sun, Earth and Mars fall in a straight line, with Mars and the Sun on “opposing” sides of Earth. The image on the left, taken on May 12, 2016, shows a clear atmosphere. The picture on the right, taken on July 18, 2018, features a global dust storm, with spring in the southern hemisphere. (NASA, ESA, and STScI)

NASA’s Hubble Space Telescope has photographed Saturn, left, and Mars, right, near their closest approaches to Earth in June and July 2018. (NASA)
Saturn is by far the solar system’s most photogenic planet, and in this latest Hubble Space Telescope snapshot it is especially so because Saturn’s magnificent ring system is near its maximum tilt toward Earth (which was in 2017). Hubble was used to observe the planet on June 6, 2018, when Saturn was only approximately 1.36 billion miles from Earth, nearly as close to us as it ever gets. (NASA, ESA, Amy Simon and the OPAL Team, and J. DePasquale (STScI))