81.6 F
Clarksville
Monday, August 15, 2022
Home Sensitive to Jupiter’s stratospheric temperatures, these infrared images were recorded by the Cooled Mid-Infrared Camera and Spectrograph (COMICS) at the Subaru Telescope on the summit of Mauna Kea, Hawaii. Areas that are more yellow and red indicate the hotter regions. (NAOJ and NASA/JPL-Caltech) Sensitive to Jupiter's stratospheric temperatures, these infrared images were recorded by the Cooled Mid-Infrared Camera and Spectrograph (COMICS) at the Subaru Telescope on the summit of Mauna Kea, Hawaii. Areas that are more yellow and red indicate the hotter regions. (NAOJ and NASA/JPL-Caltech)

Sensitive to Jupiter’s stratospheric temperatures, these infrared images were recorded by the Cooled Mid-Infrared Camera and Spectrograph (COMICS) at the Subaru Telescope on the summit of Mauna Kea, Hawaii. Areas that are more yellow and red indicate the hotter regions. (NAOJ and NASA/JPL-Caltech)

Sensitive to Jupiter's stratospheric temperatures, these infrared images were recorded by the Cooled Mid-Infrared Camera and Spectrograph (COMICS) at the Subaru Telescope on the summit of Mauna Kea, Hawaii. Areas that are more yellow and red indicate the hotter regions. (NAOJ and NASA/JPL-Caltech)

Sensitive to Jupiter’s stratospheric temperatures, these infrared images were recorded by the Cooled Mid-Infrared Camera and Spectrograph (COMICS) at the Subaru Telescope on the summit of Mauna Kea, Hawaii. Areas that are more yellow and red indicate the hotter regions. (NAOJ and NASA/JPL-Caltech)

Scientists used red, blue and yellow to infuse this infrared image of Jupiter’s atmosphere (red and yellow indicate the hotter regions), which was recorded by the Cooled Mid-Infrared Camera and Spectrograph (COMICS) at the Subaru Telescope on the summit of Mauna Kea, Hawaii on Jan. 12, 2017. (NAOJ and NASA/JPL-Caltech)