73.7 F
Clarksville
Tuesday, April 23, 2024
Home The High-Resolution Imaging Science Experiment (Hi-RISE) camera aboard NASA’s Mars Reconnaissance Orbiter captured this avalanche plunging down a 1,640-foot-tall (500-meter-tall) cliff on May 29, 2019. The image also reveals layers at Mars’ north pole during spring. As temperatures increase and vaporize ice, the destabilized ice blocks break loose and kick up dust. (NASA/JPL-Caltech/University of Arizona) The High-Resolution Imaging Science Experiment (Hi-RISE) camera aboard NASA's Mars Reconnaissance Orbiter captured this avalanche plunging down a 1,640-foot-tall (500-meter-tall) cliff on May 29, 2019. The image also reveals layers at Mars' north pole during spring. As temperatures increase and vaporize ice, the destabilized ice blocks break loose and kick up dust. (NASA/JPL-Caltech/University of Arizona)

The High-Resolution Imaging Science Experiment (Hi-RISE) camera aboard NASA’s Mars Reconnaissance Orbiter captured this avalanche plunging down a 1,640-foot-tall (500-meter-tall) cliff on May 29, 2019. The image also reveals layers at Mars’ north pole during spring. As temperatures increase and vaporize ice, the destabilized ice blocks break loose and kick up dust. (NASA/JPL-Caltech/University of Arizona)

The High-Resolution Imaging Science Experiment (Hi-RISE) camera aboard NASA's Mars Reconnaissance Orbiter captured this avalanche plunging down a 1,640-foot-tall (500-meter-tall) cliff on May 29, 2019. The image also reveals layers at Mars' north pole during spring. As temperatures increase and vaporize ice, the destabilized ice blocks break loose and kick up dust. (NASA/JPL-Caltech/University of Arizona)

The High-Resolution Imaging Science Experiment (Hi-RISE) camera aboard NASA’s Mars Reconnaissance Orbiter captured this avalanche plunging down a 1,640-foot-tall (500-meter-tall) cliff on May 29, 2019. The image also reveals layers at Mars’ north pole during spring. As temperatures increase and vaporize ice, the destabilized ice blocks break loose and kick up dust. (NASA/JPL-Caltech/University of Arizona)

A towering dust devil casts a serpentine shadow over the Martian surface in this image acquired by the High Resolution Imaging Science Experiment (HiRISE) camera on NASA’s Mars Reconnaissance Orbiter. (NASA/JPL-Caltech/Univ. of Arizona)
A dramatic, fresh impact crater dominates this image taken by the High Resolution Imaging Science Experiment (HiRISE) camera on NASA’s Mars Reconnaissance Orbiter on Nov. 19, 2013. Researchers used HiRISE to examine this site because the orbiter’s Context Camera had revealed a change in appearance here between observations in July 2010 and May 2012, bracketing the formation of the crater between those observations. (NASA/JPL-Caltech/Univ. of Arizona)