30.3 F
Clarksville
Sunday, December 4, 2022
Home Image of a carbon star known as CW Leonis or IRC+10216 taken by the Herschel Space Observatory. SOFIA found that some carbon stars with especially strong pulsations, called Mira variables, distribute large amounts of carbon to interstellar space where it can be used as a building block for life and other complex structures. (ESA/PACS/SPIRE/ Consortia) Image of a carbon star known as CW Leonis or IRC+10216 taken by the Herschel Space Observatory. SOFIA found that some carbon stars with especially strong pulsations, called Mira variables, distribute large amounts of carbon to interstellar space where it can be used as a building block for life and other complex structures. (ESA/PACS/SPIRE/ Consortia)

Image of a carbon star known as CW Leonis or IRC+10216 taken by the Herschel Space Observatory. SOFIA found that some carbon stars with especially strong pulsations, called Mira variables, distribute large amounts of carbon to interstellar space where it can be used as a building block for life and other complex structures. (ESA/PACS/SPIRE/ Consortia)

Image of a carbon star known as CW Leonis or IRC+10216 taken by the Herschel Space Observatory. SOFIA found that some carbon stars with especially strong pulsations, called Mira variables, distribute large amounts of carbon to interstellar space where it can be used as a building block for life and other complex structures. (ESA/PACS/SPIRE/ Consortia)

Image of a carbon star known as CW Leonis or IRC+10216 taken by the Herschel Space Observatory. SOFIA found that some carbon stars with especially strong pulsations, called Mira variables, distribute large amounts of carbon to interstellar space where it can be used as a building block for life and other complex structures. (ESA/PACS/SPIRE/ Consortia)