84.5 F
Clarksville
Wednesday, July 6, 2022
Home Part of the SWOT satellite’s science instrument payload sits in a clean room at NASA’s Jet Propulsion Laboratory during assembly. By measuring the height of the water in the planet’s ocean, lakes, and rivers, researchers can track the volume and location of the finite resource around the world. (NASA/JPL-Caltech) Part of the SWOT satellite’s science instrument payload sits in a clean room at NASA’s Jet Propulsion Laboratory during assembly. By measuring the height of the water in the planet's ocean, lakes, and rivers, researchers can track the volume and location of the finite resource around the world. (NASA/JPL-Caltech)

Part of the SWOT satellite’s science instrument payload sits in a clean room at NASA’s Jet Propulsion Laboratory during assembly. By measuring the height of the water in the planet’s ocean, lakes, and rivers, researchers can track the volume and location of the finite resource around the world. (NASA/JPL-Caltech)

Part of the SWOT satellite’s science instrument payload sits in a clean room at NASA’s Jet Propulsion Laboratory during assembly. By measuring the height of the water in the planet's ocean, lakes, and rivers, researchers can track the volume and location of the finite resource around the world. (NASA/JPL-Caltech)

Part of the SWOT satellite’s science instrument payload sits in a clean room at NASA’s Jet Propulsion Laboratory during assembly. By measuring the height of the water in the planet’s ocean, lakes, and rivers, researchers can track the volume and location of the finite resource around the world. (NASA/JPL-Caltech)

The state-of-the-art Earth science satellites launching in the near future will be generating unprecedented quantities of data on our planet’s vital signs. Cloud computing will help researchers make the most of those troves of information. (NASA Earth Observatory)
Part of the NISAR satellite rests in a thermal vacuum chamber at NASA’s Jet Propulsion Laboratory in August 2020. The Earth satellite will track subtle changes in the planet’s surface as small as 0.4 inches. (NASA/JPL-Caltech)