84.6 F
Clarksville
Saturday, July 2, 2022
Home This illustration shows a black hole surrounded by an accretion disk made of hot gas, with a jet extending into space. NASA’s NuSTAR telescope has helped measure how far particles in these jets travel before they “turn on” and become bright sources of. (NASA/JPL-Caltech) This illustration shows a black hole surrounded by an accretion disk made of hot gas, with a jet extending into space. NASA’s NuSTAR telescope has helped measure how far particles in these jets travel before they “turn on” and become bright sources of. (NASA/JPL-Caltech)

This illustration shows a black hole surrounded by an accretion disk made of hot gas, with a jet extending into space. NASA’s NuSTAR telescope has helped measure how far particles in these jets travel before they “turn on” and become bright sources of. (NASA/JPL-Caltech)

This illustration shows a black hole surrounded by an accretion disk made of hot gas, with a jet extending into space. NASA’s NuSTAR telescope has helped measure how far particles in these jets travel before they “turn on” and become bright sources of. (NASA/JPL-Caltech)

This illustration shows a black hole surrounded by an accretion disk made of hot gas, with a jet extending into space. NASA’s NuSTAR telescope has helped measure how far particles in these jets travel before they “turn on” and become bright sources of. (NASA/JPL-Caltech)

X-rays from the Sun – seen in the green and blue observations by NASA’s NuSTAR – come from gas heated to more than 5.4 million degrees Fahrenheit (3 million degrees Celsius). Data taken by NASA’s Solar Dynamics Observatory, seen in orange, shows mater. (NASA/JPL-Caltech/GSFC)