Clarksville, TN Online: News, Opinion, Arts & Entertainment.


Topic: Neutron Star

NASA Science continues from Home Offices, Video Conferencing in response to Coronavirus

 

NASA - National Aeronautics and Space AdministrationWashington, D.C. – Across NASA’s many missions, thousands of scientists, engineers, and other experts and professionals all over the country are doing what they do best, but now from home offices and via video conferencing.

With most personnel supporting missions remotely to keep onsite staff at a minimal level in response to Coronavirus (COVID-19), the Agency is moving ahead strongly with everything from space exploration to using our technology and innovation to help inform policy makers.  

NASA missions continue during Coronavirus outbreak. (NASA)

NASA missions continue during Coronavirus outbreak. (NASA)

«Read the rest of this article»

Sections: Technology | No Comments
 

NASA’s Chandra X-ray Observatory data reveals Cosmic Jekyll and Hyde

 

NASA - National Aeronautics and Space AdministrationHuntsville, AL – A double star system has been flipping between two alter egos, according to observations with NASA’s Chandra X-ray Observatory and the National Science Foundation’s Karl F. Jansky Very Large Array (VLA).

Using nearly a decade and a half worth of Chandra data, researchers noticed that a stellar duo behaved like one type of object before switching its identity, and then returning to its original state after a few years. This is a rare example of a star system changing its behavior in this way.

Terzan 5 (right), low, medium and high-energy X-rays detected by Chandra are colored red, green and blue respectively. On the left, an image from the Hubble Space Telescope shows the same field of view in optical light. Terzan 5 CX1 is labeled as CX1 in the Chandra image. (NASA)

Terzan 5 (right), low, medium and high-energy X-rays detected by Chandra are colored red, green and blue respectively. On the left, an image from the Hubble Space Telescope shows the same field of view in optical light. Terzan 5 CX1 is labeled as CX1 in the Chandra image. (NASA)

«Read the rest of this article»

Sections: Technology | No Comments
 

NASA’s Chandra X-ray Observatory, Hubble Telescope, Spitzer Telescope photos used to make 3D image of Crab Nebula

 

NASA - National Aeronautics and Space AdministrationGreenbelt, MD – Astronomers and visualization specialists from NASA’s Universe of Learning program have combined the visible, infrared and X-ray vision of NASA’s Great Observatories to create a three-dimensional representation of the dynamic Crab Nebula, the tattered remains of an exploded star.

The multiwavelength computer graphics visualization is based on images from the NASA Chandra X-ray Observatory, the NASA Hubble Space Telescope and the NASA Spitzer Space Telescope.

This new multiwavelength image of the Crab Nebula combines X-ray light from the Chandra X-ray Observatory (in blue) with visible light from the Hubble Space Telescope (in yellow) and infrared light seen by the Spitzer Space Telescope (in red). This particular combination of light from across the electromagnetic spectrum highlights the nested structure of the pulsar wind nebula. The X-rays reveal the beating heart of the Crab, the neutron-star remnant from the supernova explosion seen almost a thousand years ago. (NASA, ESA and J. DePasquale (STScI) and R. Hurt (Caltech/IPAC))

This new multiwavelength image of the Crab Nebula combines X-ray light from the Chandra X-ray Observatory (in blue) with visible light from the Hubble Space Telescope (in yellow) and infrared light seen by the Spitzer Space Telescope (in red). This particular combination of light from across the electromagnetic spectrum highlights the nested structure of the pulsar wind nebula. The X-rays reveal the beating heart of the Crab, the neutron-star remnant from the supernova explosion seen almost a thousand years ago. (NASA, ESA and J. DePasquale (STScI) and R. Hurt (Caltech/IPAC))

«Read the rest of this article»

Sections: Technology | No Comments
 


NASA’s NICER telescope records sudden spike of X-Rays

 

NASA - National Aeronautics and Space AdministrationGreenbelt, MDNASA’s Neutron star Interior Composition Explorer (NICER) telescope on the International Space Station detected a sudden spike of X-rays at about 9:04pm CDT on August 20th. The burst was caused by a massive thermonuclear flash on the surface of a pulsar, the crushed remains of a star that long ago exploded as a supernova.

The X-ray burst, the brightest seen by NICER so far, came from an object named SAX J1808.4-3658, or J1808 for short. The observations reveal many phenomena that have never been seen together in a single burst. In addition, the subsiding fireball briefly brightened again for reasons astronomers cannot yet explain.

Illustration depicting a Type I X-ray burst. The explosion first blows off the hydrogen layer, which expands and ultimately dissipates. Then rising radiation builds to the point where it blows off the helium layer, which overtakes the expanding hydrogen. Some of the X-rays emitted in the blast scatter off of the accretion disk. The fireball then quickly cools, and the helium settles back onto the surface. (NASA's Goddard Space Flight Center/Chris Smith (USRA))

Illustration depicting a Type I X-ray burst. The explosion first blows off the hydrogen layer, which expands and ultimately dissipates. Then rising radiation builds to the point where it blows off the helium layer, which overtakes the expanding hydrogen. Some of the X-rays emitted in the blast scatter off of the accretion disk. The fireball then quickly cools, and the helium settles back onto the surface. (NASA’s Goddard Space Flight Center/Chris Smith (USRA))

«Read the rest of this article»

Sections: Technology | No Comments
 

NASA’s discovers bright Neutron Star among two Supermassive Black Holes

 

NASA Jet Propulsion Laboratory

NASA - National Aeronautics and Space AdministrationPasadena, CA – In the nearby Whirlpool galaxy and its companion galaxy, M51b, two supermassive black holes heat up and devour surrounding material. These two monsters should be the most luminous X-ray sources in sight, but a new study using observations from NASA’s NuSTAR (Nuclear Spectroscopic Telescope Array) mission shows that a much smaller object is competing with the two behemoths.

The most stunning features of the Whirlpool galaxy – officially known as M51a – are the two long, star-filled “arms” curling around the galactic center like ribbons. The much smaller M51b clings like a barnacle to the edge of the Whirlpool. Collectively known as M51, the two galaxies are merging.

Bright green sources of high-energy X-ray light captured by NASA's NuSTAR mission are overlaid on an optical-light image of the Whirlpool galaxy (in the center of the image) and its companion galaxy, M51b (the bright greenish-white spot above the Whirlpool), taken by the Sloan Digital Sky Survey. (NASA/JPL-Caltech, IPAC)

Bright green sources of high-energy X-ray light captured by NASA’s NuSTAR mission are overlaid on an optical-light image of the Whirlpool galaxy (in the center of the image) and its companion galaxy, M51b (the bright greenish-white spot above the Whirlpool), taken by the Sloan Digital Sky Survey. (NASA/JPL-Caltech, IPAC)

«Read the rest of this article»

Sections: Technology | No Comments
 

NASA Telescopes used to study unusual Flash of Light nicknamed “The Cow”

 

Written by Jeanette Kazmierczak
NASA Goddard Space Flight Center

NASA - National Aeronautics and Space AdministrationGreenbelt, MD – A brief and unusual flash spotted in the night sky on June 16th, 2018, puzzled astronomers and astrophysicists across the globe. The event – called AT2018cow and nicknamed “the Cow” after the coincidental final letters in its official name – is unlike any celestial outburst ever seen before, prompting multiple theories about its source.

Over three days, the Cow produced a sudden explosion of light at least 10 times brighter than a typical supernova, and then it faded over the next few months.

AT2018cow erupted in or near a galaxy known as CGCG 137-068, which is located about 200 million light-years away in the constellation Hercules. This zoomed-in image shows the location of the "Cow" in the galaxy. (Sloan Digital Sky Survey)

AT2018cow erupted in or near a galaxy known as CGCG 137-068, which is located about 200 million light-years away in the constellation Hercules. This zoomed-in image shows the location of the “Cow” in the galaxy. (Sloan Digital Sky Survey)

«Read the rest of this article»

Sections: Technology | No Comments
 

NASA Telescopes discover Electromagnetic waves from a Gravitational Wave Source

 

NASA’s Goddard Space Flight Center

NASA - National Aeronautics and Space AdministrationGreenbelt, MD – About a year ago, astronomers excitedly reported the first detection of electromagnetic waves, or light, from a gravitational wave source. Now, a year later, researchers are announcing the existence of a cosmic relative to that historic event.

The discovery was made using data from telescopes including NASA’s Chandra X-ray Observatory, Fermi Gamma-ray Space Telescope, Neil Gehrels Swift Observatory, the NASA/ESA Hubble Space Telescope, and the Discovery Channel Telescope (DCT).

A distant cosmic relative to the first source that astronomers detected in both gravitational waves and light may have been discovered. This object, called GRB150101B, was first detected by identified as a gamma ray burst (GRB) by the NASA’s Fermi satellite in January 2015. (X-ray: NASA/CXC/GSFC/UMC/E. Troja et al.; Optical and infrared: NASA/STScI)

A distant cosmic relative to the first source that astronomers detected in both gravitational waves and light may have been discovered. This object, called GRB150101B, was first detected by identified as a gamma ray burst (GRB) by the NASA’s Fermi satellite in January 2015. (X-ray: NASA/CXC/GSFC/UMC/E. Troja et al.; Optical and infrared: NASA/STScI)

«Read the rest of this article»

Sections: Technology | No Comments
 


NASA Scientists use “Pulsar in a Box” to gain better understanding of Neutron Stars

 

Written by Francis Reddy
NASA’s Goddard Space Flight Center

NASA - National Aeronautics and Space AdministrationGreenbelt, MD – An international team of scientists studying what amounts to a computer-simulated “pulsar in a box” are gaining a more detailed understanding of the complex, high-energy environment around spinning neutron stars, also called pulsars.

The model traces the paths of charged particles in magnetic and electric fields near the neutron star, revealing behaviors that may help explain how pulsars emit gamma-ray and radio pulses with ultraprecise timing.

Electrons (blue) and positrons (red) from a computer-simulated pulsar. These particles become accerlated to extreme energies in a pulsar's powerful magnetic and electric fields; lighter tracks show particles with higher energies. Each particle seen here actually represents trillions of electrons or positrons. (NASA's Goddard Space Flight Center)

Electrons (blue) and positrons (red) from a computer-simulated pulsar. These particles become accerlated to extreme energies in a pulsar’s powerful magnetic and electric fields; lighter tracks show particles with higher energies. Each particle seen here actually represents trillions of electrons or positrons. (NASA’s Goddard Space Flight Center)

«Read the rest of this article»

Sections: Technology | No Comments
 

NASA’s Hubble Space Telescope observes Neutran Star with unusual Light Emission

 

NASA Headquarters

NASA - National Aeronautics and Space AdministrationWashington, D.C. – An unusual infrared light emission from a nearby neutron star detected by NASA’s Hubble Space Telescope could indicate new features never before seen. One possibility is that there is a dusty disk surrounding the neutron star; another is that there is an energetic wind coming off the object and slamming into gas in interstellar space the neutron star is plowing through.

Although neutron stars are generally studied in radio and high-energy emissions, such as X-rays, this study demonstrates that new and interesting information about neutron stars can also be gained by studying them in infrared light, say researchers.

This is an illustration of a pulsar wind nebula produced by the interaction of the outflow particles from the neutron star with gaseous material in the interstellar medium that the neutron star is plowing through. Such an infrared-only pulsar wind nebula is unusual because it implies a rather low energy of the particles accelerated by the pulsar’s intense magnetic field. (NASA, ESA, and N. Tr’Ehnl (Pennsylvania State University))

This is an illustration of a pulsar wind nebula produced by the interaction of the outflow particles from the neutron star with gaseous material in the interstellar medium that the neutron star is plowing through. Such an infrared-only pulsar wind nebula is unusual because it implies a rather low energy of the particles accelerated by the pulsar’s intense magnetic field. (NASA, ESA, and N. Tr’Ehnl (Pennsylvania State University))

«Read the rest of this article»

Sections: Technology | No Comments
 

NASA discovers X-ray Pulsar with fastest Orbit ever recorded

 

Written by Jeanette Kazmierczak
NASA’s Goddard Space Flight Center

NASA - National Aeronautics and Space AdministrationGreenbelt, MD – Scientists analyzing the first data from the Neutron star Interior Composition Explorer (NICER) mission have found two stars that revolve around each other every 38 minutes — about the time it takes to stream a TV drama.

One of the stars in the system, called IGR J17062–6143 (J17062 for short), is a rapidly spinning, superdense star called a pulsar. The discovery bestows the stellar pair with the record for the shortest-known orbital period for a certain class of pulsar binary system.

The data from NICER also show J17062’s stars are only about 186,000 miles (300,000 kilometers) apart, less than the distance between Earth and the Moon.

The stars of IGR J17062–6143, illustrated here, circle each other every 38 minutes, the fastest-known orbit for a binary system containing an accreting millisecond X-ray pulsar. As they revolve, a superdense pulsar pulls gas from a lightweight white dwarf. The two stars are so close they would fit between Earth and the Moon. (NASA’s Goddard Space Flight Center)

The stars of IGR J17062–6143, illustrated here, circle each other every 38 minutes, the fastest-known orbit for a binary system containing an accreting millisecond X-ray pulsar. As they revolve, a superdense pulsar pulls gas from a lightweight white dwarf. The two stars are so close they would fit between Earth and the Moon. (NASA’s Goddard Space Flight Center)

«Read the rest of this article»

Sections: Technology | No Comments
 



  • Visit Us On FacebookVisit Us On TwitterVisit Us On PinterestVisit Us On YoutubeCheck Our FeedVisit Us On Instagram
  • Personal Controls

    Archives