Clarksville, TN Online: News, Opinion, Arts & Entertainment.


Topic: X-Rays

NASA’s Chandra X-ray Observatory, Hubble Space Telescope Hunt for Missing Giant Black Hole

 

NASA - National Aeronautics and Space AdministrationWashington, D.C. – NASA says the mystery surrounding the whereabouts of a supermassive black hole has deepened.

Despite searching with NASA’s Chandra X-ray Observatory and Hubble Space Telescope, astronomers have no evidence that a distant black hole estimated to weigh between 3 billion and 100 billion times the mass of the Sun is anywhere to be found.

This missing black hole should be in the enormous galaxy in the center of the galaxy cluster Abell 2261, which is located about 2.7 billion light years from Earth.

This composite image of Abell 2261 contains optical data from Hubble and the Subaru Telescope showing galaxies in the cluster and in the background, and Chandra X-ray data showing hot gas (colored pink) pervading the cluster. (NASA)

This composite image of Abell 2261 contains optical data from Hubble and the Subaru Telescope showing galaxies in the cluster and in the background, and Chandra X-ray data showing hot gas (colored pink) pervading the cluster. (NASA)

«Read the rest of this article»

Sections: Technology | No Comments
 

NASA explains Black Holes

 

NASA - National Aeronautics and Space AdministrationWashington, D.C. – A black hole is an astronomical object with a gravitational pull so strong that nothing, not even light, can escape it. A black hole’s “surface,” called its event horizon, defines the boundary where the velocity needed to escape exceeds the speed of light, which is the speed limit of the cosmos. Matter and radiation fall in, but they can’t get out.

Two main classes of black holes have been extensively observed. Stellar-mass black holes with three to dozens of times the Sun’s mass are spread throughout our Milky Way galaxy, while supermassive monsters weighing 100,000 to billions of solar masses are found in the centers of most big galaxies, ours included.

This simulation of a supermassive black hole shows how it distorts the starry background and captures light, producing a black hole silhouettes. (NASA’s Goddard Space Flight Center; background, ESA/Gaia/DPAC)

This simulation of a supermassive black hole shows how it distorts the starry background and captures light, producing a black hole silhouettes. (NASA’s Goddard Space Flight Center; background, ESA/Gaia/DPAC)

«Read the rest of this article»

Sections: Technology | No Comments
 

NASA’s Swift Observatory discovers newly created Neutron Star

 

NASA - National Aeronautics and Space AdministrationPasadena, CA – NASA says astronomers tend to have a slightly different sense of time than the rest of us. They regularly study events that happened millions or billions of years ago, and objects that have been around for just as long.

That’s partly why the recently discovered neutron star known as Swift J1818.0-1607 is remarkable: A new study in the journal Astrophysical Journal Letters estimates that it is only about 240 years old – a veritable newborn by cosmic standards.

NASA’s Neil Gehrels Swift Observatory spotted the young object on March 12th, when it released a massive burst of X-rays.

This illustration shows magnetic field lines protruding from a highly magnetic neutron star, or a dense nugget left over after a star goes supernova and explodes. Known as magnetars, these objects generate bright bursts of light that might be powered by their strong magnetic fields. (ESA)

This illustration shows magnetic field lines protruding from a highly magnetic neutron star, or a dense nugget left over after a star goes supernova and explodes. Known as magnetars, these objects generate bright bursts of light that might be powered by their strong magnetic fields. (ESA)

«Read the rest of this article»

Sections: Technology | No Comments
 


NASA’s Chandra X-ray Observatory discovers Star that Survives Close Encounter with Black Hole

 

NASA - National Aeronautics and Space AdministrationHuntsville, AL – NASA reports that astronomers may have discovered a new kind of survival story: a star that had a brush with a giant black hole and lived to tell the tale through exclamations of X-rays.

Data from NASA’s Chandra X-ray Observatory and ESA’s XMM-Newton uncovered the account that began with a red giant star wandering too close to a supermassive black hole in a galaxy about 250 million light years from Earth. The black hole, located in a galaxy called GSN 069, has a mass about 400,000 times that of the Sun, putting it on the small end of the scale for supermassive black holes.

Astronomers may have discovered a new kind of survival story: a star that had a brush with a giant black hole and lived to tell the tale through exclamations of X-rays. Data from NASA’s Chandra X-ray Observatory and ESA’s XMM-Newton uncovered the account that began with a red giant star wandering too close to a supermassive black hole in a galaxy about 250 million light years from Earth. (X-ray: NASA/CXO/CSIC-INTA/G.Miniutti et al.; Illustration: NASA/CXC/M. Weiss)

Astronomers may have discovered a new kind of survival story: a star that had a brush with a giant black hole and lived to tell the tale through exclamations of X-rays. Data from NASA’s Chandra X-ray Observatory and ESA’s XMM-Newton uncovered the account that began with a red giant star wandering too close to a supermassive black hole in a galaxy about 250 million light years from Earth. (X-ray: NASA/CXO/CSIC-INTA/G.Miniutti et al.; Illustration: NASA/CXC/M. Weiss)

«Read the rest of this article»

Sections: Technology | No Comments
 

NASA’s Hubble Space Telescope discovers evidence of Elusive Black Hole

 

NASA - National Aeronautics and Space AdministrationGreenbelt, MD – Astronomers have found the best evidence for the perpetrator of a cosmic homicide: a black hole of an elusive class known as “intermediate-mass,” which betrayed its existence by tearing apart a wayward star that passed too close.

Weighing in at about 50,000 times the mass of our Sun, the black hole is smaller than the supermassive black holes (at millions or billions of solar masses) that lie at the cores of large galaxies, but larger than stellar-mass black holes formed by the collapse of a massive star.

This illustration depicts a cosmic homicide in action. A wayward star is being shredded by the intense gravitational pull of a black hole that contains tens of thousands of solar masses. The stellar remains are forming an accretion disk around the black hole. Flares of X-ray light from the super-heated gas disk alerted astronomers to the black hole's location; otherwise it lurked unknown in the dark. (NASA, ESA and D. Player (STScI))

This illustration depicts a cosmic homicide in action. A wayward star is being shredded by the intense gravitational pull of a black hole that contains tens of thousands of solar masses. The stellar remains are forming an accretion disk around the black hole. Flares of X-ray light from the super-heated gas disk alerted astronomers to the black hole’s location; otherwise it lurked unknown in the dark. (NASA, ESA and D. Player (STScI))

«Read the rest of this article»

Sections: Technology | No Comments
 

NASA’s Hubble Space Telescope observes Quasar emitting Energy across the Galaxy

 

NASA - National Aeronautics and Space AdministrationGreenbelt, MD – Using the unique capabilities of NASA’s Hubble Space Telescope, a team of astronomers has discovered the most energetic outflows ever witnessed in the universe. They emanate from quasars and tear across interstellar space like tsunamis, wreaking havoc on the galaxies in which the quasars live.

Quasars are extremely remote celestial objects, emitting exceptionally large amounts of energy. Quasars contain supermassive black holes fueled by infalling matter that can shine 1,000 times brighter than their host galaxies of hundreds of billions of stars.

This is an illustration of a distant galaxy with an active quasar at its center. A quasar emits exceptionally large amounts of energy generated by a supermassive black hole fueled by infalling matter. Using the unique capabilities of the Hubble Space Telescope, astronomers have discovered that blistering radiation pressure from the vicinity of the black hole pushes material away from the galaxy's center at a fraction of the speed of light. (NASA, ESA and J. Olmsted (STScI))

This is an illustration of a distant galaxy with an active quasar at its center. A quasar emits exceptionally large amounts of energy generated by a supermassive black hole fueled by infalling matter. Using the unique capabilities of the Hubble Space Telescope, astronomers have discovered that blistering radiation pressure from the vicinity of the black hole pushes material away from the galaxy’s center at a fraction of the speed of light. (NASA, ESA and J. Olmsted (STScI))

«Read the rest of this article»

Sections: Technology | No Comments
 

Student built instrument onboard NASA’s OSIRIS-REx Spacecraft detects new Black Hole

 

NASA - National Aeronautics and Space AdministrationWashington, D.C. – University students and researchers working on a NASA mission orbiting a near-Earth asteroid have made an unexpected detection of a phenomenon 30 thousand light years away. Last fall, the student-built Regolith X-Ray Imaging Spectrometer (REXIS) onboard NASA’s OSIRIS-REx spacecraft detected a newly flaring black hole in the constellation Columba while making observations off the limb of asteroid Bennu.

REXIS, a shoebox-sized student instrument, was designed to measure the X-rays that Bennu emits in response to incoming solar radiation. X-rays are a form of electromagnetic radiation, like visible light, but with much higher energy.

This image shows the X-ray outburst from the black hole MAXI J0637-043, detected by the REXIS instrument on NASA's OSIRIS-REx spacecraft. The image was constructed using data collected by the X-ray spectrometer while REXIS was making observations of the space around asteroid Bennu on Nov. 11, 2019. (NASA/Goddard/University of Arizona/MIT/Harvard)

This image shows the X-ray outburst from the black hole MAXI J0637-043, detected by the REXIS instrument on NASA’s OSIRIS-REx spacecraft. The image was constructed using data collected by the X-ray spectrometer while REXIS was making observations of the space around asteroid Bennu on Nov. 11, 2019. (NASA/Goddard/University of Arizona/MIT/Harvard)

«Read the rest of this article»

Sections: Technology | No Comments
 


NASA answers the question, “What Are Black Holes?”

 

NASA - National Aeronautics and Space AdministrationGreenbelt, MD – NASA says a black hole is an astronomical object with a gravitational pull so strong that nothing, not even light, can escape it. A black hole’s “surface,” called its event horizon, defines the boundary where the velocity needed to escape exceeds the speed of light, which is the speed limit of the cosmos. Matter and radiation fall in, but they can’t get out.

Two main classes of black holes have been extensively observed. Stellar-mass black holes with three to dozens of times the Sun’s mass are spread throughout our Milky Way galaxy, while supermassive monsters weighing 100,000 to billions of solar masses are found in the centers of most big galaxies, ours included.

This simulation of a supermassive black hole shows how it distorts the starry background and captures light, producing a black hole silhouettes. (NASA’s Goddard Space Flight Center; background, ESA/Gaia/DPAC)

This simulation of a supermassive black hole shows how it distorts the starry background and captures light, producing a black hole silhouettes. (NASA’s Goddard Space Flight Center; background, ESA/Gaia/DPAC)

«Read the rest of this article»

Sections: Technology | No Comments
 

NASA’s NICER telescope records sudden spike of X-Rays

 

NASA - National Aeronautics and Space AdministrationGreenbelt, MDNASA’s Neutron star Interior Composition Explorer (NICER) telescope on the International Space Station detected a sudden spike of X-rays at about 9:04pm CDT on August 20th. The burst was caused by a massive thermonuclear flash on the surface of a pulsar, the crushed remains of a star that long ago exploded as a supernova.

The X-ray burst, the brightest seen by NICER so far, came from an object named SAX J1808.4-3658, or J1808 for short. The observations reveal many phenomena that have never been seen together in a single burst. In addition, the subsiding fireball briefly brightened again for reasons astronomers cannot yet explain.

Illustration depicting a Type I X-ray burst. The explosion first blows off the hydrogen layer, which expands and ultimately dissipates. Then rising radiation builds to the point where it blows off the helium layer, which overtakes the expanding hydrogen. Some of the X-rays emitted in the blast scatter off of the accretion disk. The fireball then quickly cools, and the helium settles back onto the surface. (NASA's Goddard Space Flight Center/Chris Smith (USRA))

Illustration depicting a Type I X-ray burst. The explosion first blows off the hydrogen layer, which expands and ultimately dissipates. Then rising radiation builds to the point where it blows off the helium layer, which overtakes the expanding hydrogen. Some of the X-rays emitted in the blast scatter off of the accretion disk. The fireball then quickly cools, and the helium settles back onto the surface. (NASA’s Goddard Space Flight Center/Chris Smith (USRA))

«Read the rest of this article»

Sections: Technology | No Comments
 

NASA’s Spitzer Space Telescope reveals oldest Galaxies brighter than expected

 

NASA - National Aeronautics and Space AdministrationPasadena, CA – The universe’s earliest galaxies were brighter than expected according to NASA’s Spitzer Space Telescope data. The excess light is a byproduct of the galaxies releasing incredibly high amounts of ionizing radiation.

The finding offers clues to the cause of the Epoch of Reionization, a major cosmic event that transformed the universe from being mostly opaque to the brilliant starscape seen today.

In a new study, researchers report on observations of some of the first galaxies to form in the universe, less than 1 billion years after the big bang (or a little more than 13 billion years ago).

This deep-field view of the sky (center) taken by NASA's Hubble and Spitzer space telescopes is dominated by galaxies - including some very faint, very distant ones - circled in red. The bottom right inset shows the light collected from one of those galaxies during a long-duration observation. (NASA/JPL-Caltech/ESA/Spitzer/P. Oesch/S. De Barros/I.Labbe)

This deep-field view of the sky (center) taken by NASA’s Hubble and Spitzer space telescopes is dominated by galaxies – including some very faint, very distant ones – circled in red. The bottom right inset shows the light collected from one of those galaxies during a long-duration observation. (NASA/JPL-Caltech/ESA/Spitzer/P. Oesch/S. De Barros/I.Labbe)

«Read the rest of this article»

Sections: Technology | No Comments
 



  • Visit Us On FacebookVisit Us On TwitterVisit Us On PinterestVisit Us On YoutubeCheck Our FeedVisit Us On Instagram
  • Personal Controls